108 research outputs found

    On the complexity of nonlinear mixed-integer optimization

    Full text link
    This is a survey on the computational complexity of nonlinear mixed-integer optimization. It highlights a selection of important topics, ranging from incomputability results that arise from number theory and logic, to recently obtained fully polynomial time approximation schemes in fixed dimension, and to strongly polynomial-time algorithms for special cases.Comment: 26 pages, 5 figures; to appear in: Mixed-Integer Nonlinear Optimization, IMA Volumes, Springer-Verla

    New computer-based search strategies for extreme functions of the Gomory--Johnson infinite group problem

    Full text link
    We describe new computer-based search strategies for extreme functions for the Gomory--Johnson infinite group problem. They lead to the discovery of new extreme functions, whose existence settles several open questions.Comment: 54 pages, many figure

    Computing parametric rational generating functions with a primal Barvinok algorithm

    Full text link
    Computations with Barvinok's short rational generating functions are traditionally being performed in the dual space, to avoid the combinatorial complexity of inclusion--exclusion formulas for the intersecting proper faces of cones. We prove that, on the level of indicator functions of polyhedra, there is no need for using inclusion--exclusion formulas to account for boundary effects: All linear identities in the space of indicator functions can be purely expressed using half-open variants of the full-dimensional polyhedra in the identity. This gives rise to a practically efficient, parametric Barvinok algorithm in the primal space.Comment: 16 pages, 1 figure; v2: Minor corrections, new example and summary of algorithm; submitted to journa

    A primal Barvinok algorithm based on irrational decompositions

    Full text link
    We introduce variants of Barvinok's algorithm for counting lattice points in polyhedra. The new algorithms are based on irrational signed decomposition in the primal space and the construction of rational generating functions for cones with low index. We give computational results that show that the new algorithms are faster than the existing algorithms by a large factor.Comment: v3: New all-primal algorithm. v4: Extended introduction, updated computational results. To appear in SIAM Journal on Discrete Mathematic

    Structure and Interpretation of Dual-Feasible Functions

    Full text link
    We study two techniques to obtain new families of classical and general Dual-Feasible Functions: A conversion from minimal Gomory--Johnson functions; and computer-based search using polyhedral computation and an automatic maximality and extremality test.Comment: 6 pages extended abstract to appear in Proc. LAGOS 2017, with 21 pages of appendi

    Equivariant Perturbation in Gomory and Johnson's Infinite Group Problem. VII. Inverse semigroup theory, closures, decomposition of perturbations

    Full text link
    In this self-contained paper, we present a theory of the piecewise linear minimal valid functions for the 1-row Gomory-Johnson infinite group problem. The non-extreme minimal valid functions are those that admit effective perturbations. We give a precise description of the space of these perturbations as a direct sum of certain finite- and infinite-dimensional subspaces. The infinite-dimensional subspaces have partial symmetries; to describe them, we develop a theory of inverse semigroups of partial bijections, interacting with the functional equations satisfied by the perturbations. Our paper provides the foundation for grid-free algorithms for the Gomory-Johnson model, in particular for testing extremality of piecewise linear functions whose breakpoints are rational numbers with huge denominators.Comment: 67 pages, 21 figures; v2: changes to sections 10.2-10.3, improved figures; v3: additional figures and minor updates, add reference to IPCO abstract. CC-BY-S

    The Triangle Closure is a Polyhedron

    Full text link
    Recently, cutting planes derived from maximal lattice-free convex sets have been studied intensively by the integer programming community. An important question in this research area has been to decide whether the closures associated with certain families of lattice-free sets are polyhedra. For a long time, the only result known was the celebrated theorem of Cook, Kannan and Schrijver who showed that the split closure is a polyhedron. Although some fairly general results were obtained by Andersen, Louveaux and Weismantel [ An analysis of mixed integer linear sets based on lattice point free convex sets, Math. Oper. Res. 35 (2010), 233--256] and Averkov [On finitely generated closures in the theory of cutting planes, Discrete Optimization 9 (2012), no. 4, 209--215], some basic questions have remained unresolved. For example, maximal lattice-free triangles are the natural family to study beyond the family of splits and it has been a standing open problem to decide whether the triangle closure is a polyhedron. In this paper, we show that when the number of integer variables m=2m=2 the triangle closure is indeed a polyhedron and its number of facets can be bounded by a polynomial in the size of the input data. The techniques of this proof are also used to give a refinement of necessary conditions for valid inequalities being facet-defining due to Cornu\'ejols and Margot [On the facets of mixed integer programs with two integer variables and two constraints, Mathematical Programming 120 (2009), 429--456] and obtain polynomial complexity results about the mixed integer hull.Comment: 39 pages; made self-contained by merging material from arXiv:1107.5068v

    Computation of Atomic Fibers of Z-Linear Maps

    Full text link
    For given matrix A∈Zd×nA\in\Z^{d\times n}, the set Pb={z:Az=b,z∈Z+n}P_{b}=\{z:Az=b,z\in\Z^n_+\} describes the preimage or fiber of b∈Zdb\in\Z^d under the Z\Z-linear map fA:Z+n→Zdf_A:\Z^n_+\to\Z^d, x↦Axx\mapsto Ax. The fiber PbP_{b} is called atomic, if Pb=Pb1+Pb2P_{b}=P_{b_1}+P_{b_2} implies b=b1b=b_1 or b=b2b=b_2. In this paper we present a novel algorithm to compute such atomic fibers. An algorithmic solution to appearing subproblems, computational examples and applications are included as well.Comment: 27 page
    • …
    corecore